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ABSTRACT: Mized Integer Programming (MIP) models are known to be sensitive to slight changes. In this
study, we measure the perturbation to a production plan that occurs when re-planning is carried-on due to new
orders arrival. Perturbation level is measured using well known metrics: (1) the Hamming distance, (2) the
edit distance, and (38) the Damerau-Levenshtein distance. We propose three alternative formulations of the MIP
model that allows for the integration of these metrics directly into the objective function. By simulating arrival
of new orders for a lumber finishing mill, we show how these new re-planning models reduce the perturbation

and outperforms the approach of using the original planning model.
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1 INTRODUCTION

Most research in planning and scheduling proposes
models and algorithms that compute the production
plans “from scratch” : the aim of the model is sim-
ply to come up with the plan that best satisfies the
needs of the customers, with no consideration for the
previous computed plans. However, planning algo-
rithms/models are generally used in industrial prac-
tice following a rolling horizon approach (Linus 1991).
As an example, the mill can plan in advance for the
next 15 days, but needs to re-plan every day (or even
each time a new order arrives). Each time re-planning
is carried-on, one tries to satisfy new orders at best
while being constrained by the promises from previ-
ous orders. This has some drawbacks : it leads to
frequent modifications/perturbations of the produc-
tion plan that needs to be communicated to the staff
on the floor (Brown, Dell & Wood 1997).

Less perturbation is preferable as it allows to prepare
the work in advance more easily. Among many ad-
vantages, it allows the material used in the operations
to be moved beforehand to the production facility.

In this paper, we show how a planning/scheduling
MIP model can be modified to minimize perturbation
in a re-planning context. The old plan is passed as
an input parameter, and the new objective function
minimizes the distance between the old and the new
production plan.

Section 2 presents preliminary notions regarding met-
rics of stability/distance in the context of production
planning and order promising. The simplest metric
is called the Hamming distance and has already been
encoded into a MIP (Brown, Cormican, Lawphong-
panich & Widdis 1997). However, to the best of our
knowledge, the more refined distance metrics (edit
distance and Damerau-Levenshtein) have never been
encoded into a MIP. Therefore, we propose a for-
mulation in Section 3 and 4. Finally, in Section 5,
we perform experiments for a lumber finishing plan-
ning/scheduling problem. By simulating the arrival
of new orders for a lumber finishing mill, we show
how these new re-planning models reduce the per-
turbation and outperforms the approach of using the
original planning model.

2 PRELIMINARY CONCEPTS

We review related planning and scheduling ap-
proaches then describe multiple distance measures
and their use.

Planning is the operation of deciding which activities
should be executed to reach a goal. Scheduling is the
operation of deciding when activities are executed and
which resource executes an activity. In a planning and
scheduling problem, both planning and scheduling are
simultaneously achieved. Doing both operations at
the same time has the advantage to choose the activ-
ities while taking into account the availability of the
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resources. It results in a better solution at the cost of
solving a far more complex problem. In production
planning and scheduling problems, an activity is a
process that consumes input products and transforms
them into output products. An inventory of all input
and output products is maintained. The quantity of
a product in the inventory must be non-negative. Or-
ders are requirements for a product to appear in the
inventory in sufficient quantity. If the quantity is not
met, we are facing order lateness. A production plan
is an ordered sequence of jobs that usually optimize
an objective function such as the minimization of or-
der lateness.

The production plan needs to be regularly updated
as new orders are received. Before promising a new
order, a decider needs to know what is the impact of
this new order on the production plan. The impact
can either be a change of objective value or a too big
reorganization of the work. It is desirable to compute
a new production plan that is similar to the original
one.

2.1 RE-PLANNING

Two main approaches exist to adapt a production
plan to changes: re-optimizing from scratch or repair-
ing the existing plan. Fox et al. (Fox, Gerevini, Long
& Serina 2006) compared these two approaches and
concluded plan repair can offer the best plan stabil-
ity. Plan repair typically uses local search: the local
search starts from the original plan and improves it
by exploring the solution space near the original plan.

Persistence is the concept of using information of a
previous optimization to accelerate and stabilize a
new optimization. We suppose that both optimiza-
tions share common partial results. The partial re-
sults of the first optimization are added to the model
to facilitate the second optimization. Persistence also
has the property to keep the solution set stabler: a
small change is less likely to create a completely differ-
ent solution. Brown et al. (Brown, Dell & Wood 1997)
offer a good introduction to optimization with a per-
sistence incentive.

Juin-han Chen and Chin-tai Chen (Chen & Chen
2009) used a multi-phase approach to promise orders
in two phases. The first phase reserves the needed
resources and the second phase promises the orders
based on the reserved resources. The reservation
mechanism that the authors propose also helps to
stabilize the plan. However, in some cases, finding
the resources to reserve can be a difficult problem by
itself, for example when co-production occurs.

In planning and scheduling problems, it is likely that
one wants to modify an existing plan to fulfill new
orders that are coming in. This new production

plan should not delay the orders that were already
promised. A persistence incentive can be added by
reusing the information about the inventory from the
previous production plan to ensure that the original
orders are still guaranteed when re-optimizing.

Let I, be the quantity of product r at period ¢ that
is in the inventory in the original production plan and
I;t' , be the quantity in the new production plan for the
same product and period. Let O, be the quantity
newly ordered for product r required for period t.
The difference between the new and old inventory of
product 7 must be at least the quantity of the new
orders of this product.

t
I, > L= O Vr, t (1)
j=1

Constraint 1 guarantees that accepting new orders
O,,; attributes no additional delays to existing or-
ders by forcing the new inventory to contain at least
as much finished products as the original inventory.
Moreover, we can choose, as an objective function, to
minimize the backorders of the new orders. We can
also minimize the differences between the previous
production plan and the new one being computed ac-
cording to various distance metrics while keeping the
current production. We present in the next subsec-
tions different distance measures.

2.2 Perturbation / Distance measures

A sequence a is an ordered list of (possibly redundant)
elements that we call characters. The characters are
taken from a set of characters X called the alphabet.
For instance, a production plan can be represented
with the sequence of jobs ordered in chronological or-
der of execution. We denote by a; the i*" character
of the sequence a and by |a| its length. A distance
d(z,y) is a function that accepts two sequences and
returns a number that characterizes how different the
sequences are. The distance is null if and only if the
two sequences are identical. It is positive if the se-
quences are different. The greater the distance is,
the more differences there are between the two se-
quences. The distances studied in this paper are met-
rics and therefore they satisfy the triangle inequality,
i.e. for any three sequences x, y, and z, the relation
d(x,y) + d(y, z) > d(z, z) holds.

Distance measures between two sequences are typ-
ically used in the context of spell checking to find
which word in the dictionary is the closest to the
one that is typed (Kukich 1992).  Sankoff and
Kruskal (Sankoff & Kruskal 1983) give many other ap-
plications examples of this type of metrics, including
coding theory, human speech recognition, and com-
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putational biology. In our case, we consider the pro-
duction plans as sequences and we measure their dis-
tance with three metrics that we present in this sec-
tion: the Hamming distance, the edit distance, and
the Damerau-Levenshtein distance.

2.2.1 Hamming distance

The Hamming distance (Hamming 1950) is defined
on two sequences that have the same length and com-
putes the number of elements that are pair-wise dif-
ferent. Let I(p) be the function that returns 1 if the
proposition p is true and 0 otherwise. The hamming
distance over two sequences a and b is defined as fol-
lows.

2.2.2 Hamming distance minimization

Brown et al. (Brown, Cormican, Lawphongpanich &
Widdis 1997) use the Hamming distance to minimize
the turbulence of a submarine berthing plan when it
is revised to include new needs.

Their approach supposes that a plan already exists.
New orders are coming in and must be taken into ac-
count with new optimization. Additional constraints
are added to the original optimization model to com-
pute the Hamming distance. The original plan is rep-
resented by a fixed sequence a and new decision vari-
ables are added to represent the new plan b. The new
objective function minimizes the Hamming distance
between sequence a and sequence b. To add a persis-
tence incentive, constraints such as the one explained
in Section 2.1 can be included.

The authors model the problem as a linear program.
They introduces a binary variable ¢; = I(a; # b;) that
indicates whether the characters a; and b; are differ-
ent and minimizes the sum of these variables. The
following model minimizes the Hamming distance be-
tween a and b.

min z": q; (3)
i=1

a; — b; < ‘E|ql Viel.n (4)
gi € {0,1} (6)

Constraint (4) and (5) ensure that ¢; = 0 implies
that a; = b;. Note that one could obtain ¢; = 1 and
a; = b; in a feasible solution, but such a solution is
not optimal and is therefore discarded by the solver.

2.2.3 FEdit distance

A finer distance measure is the edit dis-
tance (Levenshtein 1966), also known as the
Levenshtein distance. While the Hamming distance
counts the number of substitution that needs to be
applied on a sequence a to obtain a sequence b, the
edit distance also counts the number of insertions
and deletions. For example, the sequences “abcdef”
and “bcdefa” have a Hamming distance of 6. However
they have an edit distance of 2: the character “a” is
deleted at the beginning of the string and inserted
at the end. The edit distance allows to compare
sequences of different sizes.

Let d; ; be the edit distance between the subsequence
formed with the i first characters of a sequence a and
the subsequence formed with the j first characters
of a sequence b. The edit distance between the two
sequences a and b is given by d|,| |5 and can be re-
cursively computed as follows.

i ifj=0

) iti=0
di—1j+1,

minq d; j_1 + 1,
di—1,j-1+ I(z; # y;)

otherwise

(7)

Computing the edit distance directly from this re-
cursion takes exponential time. However, a dynamic
programming algorithm can compute the matrix d by
computing its values row by row in O(|a|b|) time.

Figure 1 depicts the matrix created by the dynamic
programming approach. ag and by represent empty
sequences and d;; represents the edit distance be-
tween ap...a; and by ...b;. Hence, to obtain the
complete edit distance between these two sequences,
one needs to compute d|q) 3. This matrix allows to
use recursion 7 without having to compute the values
d; ; multiple times.
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| UY | W N =N T

YU WIN =D W| O

WD = DN W | &

O DO = DN Q| | OT| @

N =N W| | Ul O

D00 |T
DU | WIN O
QY O b= [ DO | = ||

Figure 1: The matrix used to compute the edit dis-
tance between “abcdef” and “bcdefa’.

Using a similar approach, Wagner (Sankoff & Kruskal
1983) presents an automaton with costs on transitions
that computes the edit distance.
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2.2.4 Damerau-Levenshtein distance

The Damerau-Levenshtein distance (Damerau 1964)
further improves the edit distance by allowing one
more edition: the transposition of two consecutive
characters. For example the strings “abc” and “bac”
have a Hamming and an edit distance of 2 but have
a Damerau-Levenshtein distance of 1. Let d;; be
the Damerau-Levenshtein distance between the sub-
sequence formed with the ¢ first characters of a se-
quence a and the subsequence formed with the j first
characters of a sequence b. As for the edit distance,
the Damerau-Levenshtein distance can be computed
recursively as follows.

i ifj =0

j iti=0
di1j+1, i

min dij-1+1, :17;2;] j_li\\

dij = di—1j-1+ I(z; # y5), a1 = b;

di—oj_o+1
di—1,;+1,

min§ d;j—1 + 1, otherwise
di—1j—1 + I(x; # y;)

(8)

As for the edit distance, computing the Damerau-
Levenshtein can be done in time O(|a||b]) using dy-
namic programming by filling in the matrix d row by
row.

To the best of our knowledge, the edit distance and
the Damerau-Levenshtein distance have never been
encoded into a MIP. We present in Section 3 a model
that minimizes the edit distance and in Section 4 a
model that minimizes the Damerau-Levenshtein dis-
tance.

3 A MIP MODEL THAT MINIMIZES THE
EDIT DISTANCE

Consider two sequences of variables a and b. These
sequences are unknown and are subject to different
constraints. We want to minimize the edit distance
between a and b. We model this objective as a mixed
integer program.

We reduce the problem of computing the edit distance
to the problem of finding a shortest path in a directed
acyclic graph. We define a graph for which there is
a node denoted d; ; for every 0 < i < |a| and 0 <
J < |b|. Each node corresponds to a cell of the matrix
used to compute the edit distance (see Figure 1). We
define four sets of edges called the horizontal edges
H, the vertical edges V', the diagonal edges D, and

the equality edges E,.

H = {(di,j—1,dij) |0 <i<|al,0<j<[b}

V={(di-1,5,dij) | 0<i<lal,0<j<[b}

D ={(di-1,j-1,di ;) | 0 <i<|a],0 < j<|b]}

By ={(di-1,j-1,di,;) | 0 <i < al,0 < j < [b],
a; = b}

Note that the diagonal edges and the equality edges
connect the same nodes. The graph allows double
edges. However, the equality edge between nodes
di—1,;—1 and d; ; is only allowed when a; = b;. Hor-
izontal, vertical, and diagonal edges have a weight of
1 while equality edges have a weight of 0. Figure 2
shows a part of the graph with incoming edges to
node dj/vj.

Figure 2: Representation of node d; ; in the edit dis-
tance graph and its four ingoing edges.

The length of a path is the sum of the weights of
the edges composing the path. The following lemma
shows the relation between the length of a path in the
graph and the edit distance between two sequences.

Lemma 1. The edit distance between the sequences
a and b is equal to the length of the shortest path
between nodes doo and djq|,|p)-

Proof. We want to show that the length of the short-
est path from dy o to each node d; ; of the graph cor-
responds to the edit distance d; ; between the subse-
quences a; ...a; and by ...b; as defined in (7). We
proceed by induction.

Base case: When j = 0, the distance from node
do,o to d; o is equal to 7 since only edges in H of weight
1 can be used and i edges of weight 1 are needed to
reach node d; 0. The same principle applies to the
base case when ¢ = 0 where only edges of V' can be
used.

Induction step: We suppose that the length of the
shortest path from dg o to the nodes d;_1 5, d; j—1, and
di—1,-1, with 4,7 > 1, is equal to the edit distances
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between the corresponding subsequences. We prove
that the proposition holds for node d; ;.

Node d; ; can be reached by four edges: one horizon-
tal, one vertical, one diagonal, and one equality edge.
Therefore, the shortest path must pass by one of the
nodes d; j_1, di—1,j, and d;—1,j—1 and then reach the
node d; ; via a single edge.

A shortest path passing by the node d;_; j_; reaches
d;; with an equality edge if a; = b; since this edge
has a null weight. Otherwise, the path passes by the
diagonal edge of weight 1. In either case, the length
of this path is given by d;_1 ;—1 + I(a; # b;).

The shortest distance to d;; is therefore given by
min(di_l,j +1, di7j_1 +1, di—l,j—l —&—I(ai #* b])) which
corresponds to the definition of the edit distance given
in (7). O

In Figure (1), the cells in bold represent the nodes
through which passes the shortest path.

Consider an augmented version of the graph where
the equality edges exist even if the relation a; = b;
does not hold.

Ey={(di-1j-1,dij) | 0<i<|a],0<j<I[b]}
Let E’ be the set of edges in the augmented graph.

E'=HUVUDUE,

We model the shortest path problem on the aug-
mented graph and forbids the augmented equality
edges to be used whenever a; # b;. Since in every
set H, V', D, or E, there is at most one in-going edge
to a node u, we denote by f(v,S) the binary variable
that is set to 1 if and only if the edge in S entering
u lies on the shortest path. Let ¢; ; be a binary vari-
able equals to 1 if and only if a; # b;. We obtain the
following model.

Minimize

> w8 9)
Se{H,V,D}
(u,v)es

subject to, for all 1 < ¢ < |a| and 1 < j < |b]

a; —b; <|Xlg,; (10)
a; —b; > —|X|q;; (11)
fdij, E) <1—qi; (12)

for all vertex u € V'\ {do,0,d|q|,5 }

O ofw8) = > f(v,9) (13)
Se{H,V,D,E,} Se{H,V,D,E/}
(v,u)€ES (u,v)€S

and

Z f(d\a\,|b\7S) =1 (14)

S€{H,V,D,E,}
where

ai,b; € ¥,q;5 € {0,1},0 < f(u,v,S)  (15)

The objective function (9) ensures that we minimize
the number of edges with weight one that lie on the
shortest path. The constraints (10) and (11) ensures
that ¢; ; = 1 whenever a; # b;. Constraint (12) en-
sures that the equality edges are not chosen when
a; # b;. Constraint (13) is the flow conservation con-
straint that ensures that if the path enters the node «
then it needs to leave the node u. The starting node
do,0 and the ending node d|) | are not subject to the
flow conservation constraint. Finally, constraint (14)
ensures that there is one and only one path ending
at node d|,,5|- Because of the flow conservation con-
straint, the path has no other choice to start at node
do,o.

The character variables a; and b; must be integers
in 3. The variables ¢; ; encoding the differences be-
tween two characters must be 0 or 1. Finally, the
flow variables f(u,v,S) do not need to be restrained
to integers. It is well known (Ahuja, Magnanti &
Orlin 1993) that the matrix that encodes the lin-
ear constraints of a shortest path problem is totally
unimodular and, consequently, the simplex method
always returns an integer optimal solution. Conse-
quently, declaring the variables f(u,v,S) as real vari-
ables rather than integer variables facilitates the com-
putation made by the MIP solver and reduces the
computation times.

In the next section we model the Damerau-
Levenshtein distance by building upon the edit dis-
tance model.

4 A MIP MODEL THAT MINIMIZES THE
DAMERAU-LEVENSHTEIN DISTANCE

In this section, the previous model is extended to min-
imize the Damerau-Levenshtein distance. We aug-
ment the graph by adding the transposition edges.

T = {(di-2,j-2,di;) |2 <i<lal,2<j <],
ai=bj_1,a;1 =b;}

The transposition edges have a weight of one. Fig-
ure 3 shows a partial representation of the graph.

Lemma 2. The Damerau-Levenshtein distance be-
tween the sequences a and b is equal to the length of
the shortest path between nodes do o and dq),p|-
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Figure 3: Partial representation of a Damerau-
Levenshtein distance graph

Proof. We want to show that the length of the short-
est path from dy o to each node d; ; of the graph cor-
responds to the Damerau-Levenshtein distance be-
tween the subsequences ay...a; and by ...b; as de-
fined in (8). We proceed by induction.

Base case: If 7,57 < 1 then the graph and the
Damerau-Levenshtein distance are identical to the
ones of edit distance. Lemma 1 applies.

Induction step: We suppose that the length of the
shortest path from dpo to the nodes d;—1 j, dij—1,
di717j717 and di,Q)j,Q, with 4,5 > 1, is equal to
Damerau-Levenshtein distances between the corre-
sponding subsequences. We prove that the propo-
sition holds for node d; ;.

Node d; ; can be reached by five edges: one horizontal,
one vertical, one diagonal, one equality edge, and one
transposition edge. Therefore, the shortest path must
pass by one of the nodes d; j—1, di—1,5, di—1,j—1, and
d;—2 ;2 and then reach the node d; ; via a single edge.

A shortest path passing by the node d;_; ;1 reaches
d; ; with an equality edge if a; = b; since this edge
has a null weight. Otherwise, the path passes by the
diagonal edge of weight 1. In either case, the length
of this path is given by d;_1 j—1 + I(a; # b;).

The shortest distance to d; ;, when a; = b;_; and
a;—1 = b; is therefore given by min(d;—1;+1,d; j—1+
1,di,1’j,1 + I(ai #* bj),difg,jfg + 1) which cor-
responds to the last case in the definition of the
Damerau-Levenshtein distance given in (8). If, how-
ever,r a; # bj_1 or a;—1 # b;, there is no transposition
edge incident to d; ; and the shortest distance to d; ;
is given by min(di,l’j +1, dl"jfl +1, difl’jfl —|—I(a2 #*
b;)) which is the third case in equation (8). O

As we did for the edit distance, we consider an aug-
mented version of the graph where the transposition
edges exist even when the conditions a; = b;j_; and
a;—1 = b; are false.

T = {(di—2j-2,dij) | 2<i<lal,2<j<[b}

However, we forbid these edges to lie on the shortest
path whenever a; = b;_; or a;—; = b; do not hold.
We obtain the following model.

Minimize

> fwS) (16)
Se{H,V,D,T"}
(u,v)€S

subject to, for all 1 <4 < |a| and 1 < j < |b]
a; —b; < |Xlgi,; (17)
a; —b; > —|X|q; ; (18)
f(dij, By) <1—qi (19)
f(dij, T') <1 —gioa (20)
fdi, T') <1 —gij (21)

for all vertex u € V'\ {do,0,da, |/}

Yoo fwS)= Y fv.8) (22)

Se{HV,D,E,,T"} Se{H,V,D,E,T'}

(v,u)eS (u,w)€S
and
> fdjag, ), 5) =1 (23)
Se{HV,D,E,,T"}
where

ai»bj627Qij€{071}a0§f(uvvvs) (24)

Constraints (20) and (21) ensure that the transposi-
tion edges do not lie on the shortest path when the
conditions a; = b;_1 or a;—1 = b; are false. The
transposition edges were added to the summations
in the objective function, in the flow conservation
constraints, and in constraint (23) that guarantees
a unique path.

5 EXPERIMENTS

We carried out experiments with industrial data for a
combined planning and scheduling problem from the
forest-products industry described in (Gaudreault,
Forget, Frayret, Rousseau, Lemieux & D’Amours
2010).

In a lumber finishing facility, lumbers are first planed
(or surfaced). They are then sorted according to their
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Period: | 1 | 2 | 3 | 4 | 5 | 6 |

N
T

|
| | |
: 8 : 10 : 122 18 12

Figure 4: Production plan for a finishing line for six
consecutive production shifts (periods).

grade (i.e. quality) with respect to the residual mois-
ture content and physical defects. Lumber may be
trimmed in order to produce a shorter lumber of a
higher grade and value. This process is usually op-
timized by hardware to produce products with the
highest value, with no consideration for the actual
customer demand. This causes the production of mul-
tiple product types at the same time (co-production)
from a single product type in input (divergence). It is
important to note that the co-production cannot be
avoided from a planning point of view: it is embedded
within the transformation process. It is common to
obtain more than 20 different types of products from
a single product. There is a setup cost each time the
facility processes a different family of products (e.g.
going from 27x3” to 2”x6”) but no setup cost to go
from one length of product to another (e.g. 2"x3"x8’
to 2”x3"x7’). Consequently, most sawmills allow such
a setup only between production shifts as they pre-
fer campaigns (a batch of products of the same di-
mension but variable length) with a duration of more
than one shift. To sum up, the decisions that must be
taken in order to plan the finishing operations are the
following: (1) which campaign to realize (i.e. which
lumber dimensions), (2) when and for how long and
(3) for each campaign, what quantities of each length
to process.

Figure 4 shows a simple example of a production plan,
including the campaigns (27x3”, 2”x6” and 2”x4”) and
the time spent on each length.

When changing the production plan, the industry
prefers to minimize the number of times that a pe-
riod is associated to a different product family. This
is more important than minimizing the number of
changes of setup times. This is due to the addi-
tional work needed to reorganize the shifts when the
product-family changes. Setup costs are considered
non significative when compared to new revenues
generated by the new orders Accepting new orders

also greatly reduces the potential new setup costs by
adding new revenues. The optimization does not sup-
port changes to the supply of raw material since it
depends on the step of drying lumber which can last
from a few days to months depending on the method
used.

5.1 Methodology

As a mixed integer program (MIP) is known to solve
the wood-finishing operations, we suppose that a pro-
duction plan is in place (we call it the original pro-
duction plan).

We then simulate new orders arrivals. For each or-
der, the due date is chosen over all periods of the
planning horizon using a uniform distribution. The
ordered products is chosen using a multi-nomial dis-
tribution fitted on the datasets. The ordered quantity
is modeled as a normal distribution.

When new orders arrive, we try to come up with a
new plan satisfying this new order with as less late-
ness as possible. This is done using the original MIP
model, but with an additional constraint preventing
it from increasing lateness for already accepted or-
ders. We then measure the Hamming distance, edit
distance and Damerau-Levenshtein of this new plan
by looking at the changes in the product-family con-
sumed at each period.

As a final step, we try to find an equivalent plan (no
more lateness for each accepted order) that minimizes
the distance with the original plan. This can be done
using any of the approaches described in previous sec-
tions (minimizing the Hamming, edit or Damerau-
Levenshtein distance).

5.2 Results

We worked with two instances of the problem (M1
and M2) provided by a Canadian wood products com-
pany. Instance M1 is an easy instance, while M2 is
larger and more difficult. The models are solved with
CPLEX 12.5 on a computer using eight Intel Core
i7-2600 CPU 3.40GHz and 4GB ram.

Figures 5a to 5¢ show the results obtained for the in-
stance M1. For each metric, they show the distance
between the original plan and the new one according
to the model that was used for replanning (the origi-
nal MIP model, the model minimizing the Hamming

Backorders | Hamming distance | Edit distance | Damerau-Levenshtein distance
minimization minimization minimization minimization
M1 1.4 0.7 4.7 4.2
M2 564.5 7.9 135.8 127.3

Table 1: Geometric mean of the run times (seconds) for each experiment.



10" International Conference of Modeling and Simulation - MOSIM1j — November 5-7 - Nancy - France

B8 Backorder minimization 25l B8 Backorder minimization |
B Hamming distance minimization B Hamming distance minimization
20¢ EE Edit distance minimization 1 EE Edit distance minimization
[ Damerau-Levenshtein distance minimization 20l W Damerau-Levenshtein distance minimization| |
o [
2 g
] T
ke ] 1
el el
o o
£ £
1S £
£ £
5 S J
T T
6 8 10 6 8 10 16
Number of new orders Number of new orders
(a) Hamming distance for dataset M1 when mini- (d) Hamming distance for dataset M2 when mini-
mizing backorders, hamming distance, edit distance = mizing backorders, hamming distance, edit distance
and Damerau-Levenshtein distance. and Damerau-Levenshtein distance.
B8 Backorder minimization 25l B8 Backorder minimization |
B Hamming distance minimization B Hamming distance minimization
20¢ EE Edit distance minimization 1 EE Edit distance minimization
[ Damerau-Levenshtein distance minimization 20l W Damerau-Levenshtein distance minimization| |
ol ] y
2 2 J
8 it
] 2
he=l o
B £
w w
6 8 10 6 8 10 16
Number of new orders Number of new orders

(b) Edit distance for dataset M1 when minimizing (e) Edit distance for dataset M2 when minimizing
backorders, hamming distance, edit distance and  backorders, hamming distance, edit distance and

=
1Sy

Damerau-Levenshtein distance. Damerau-Levenshtein distance.
201 B8 Backorder minimization 1 o5l B8 Backorder minimization |
B Hamming distance minimization B Hamming distance minimization
M Edit distance minimization M Edit distance minimization

9 [ Damerau-Levenshtein distance minimization 850l W Damerau-Levenshtein distance minimization| |
5 150 1 5
& kol
hel °
£ £
[ [
< £ 15r ]
2 2
g10p 1 g
g g
> >
o o
[ [
1S €
© ©
o o

5

6 8 10
Number of new orders Number of new orders

6 8 10

(¢) Damerau-Levenshtein distance for dataset M1  (f) Damerau-Levenshtein distance for dataset M2
when minimizing backorders, hamming distance, = when minimizing backorders, hamming distance,
edit distance and Damerau-Levenshtein distance. edit distance and Damerau-Levenshtein distance.

Figure 5: Distances obtained between the old and new plans after minimizing different metrics.
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distance, the model minimizing the edit distance, or
the model minimizing the Damerau-Levenshtein dis-
tance). Figures 5d to 5f shows results for the instance
M2.

The Damerau-Levenshtein distance being a more re-
fined metric than the other one (it would be the one
a company would like to use) our analysis focuses on
Figures 5c¢ and 5f.

Fist of all, it appears the number of new orders we
accumulate before we decide to replan does not have
a strong impact on how far the plan is perturbed.
Second, the three models we propose provide much
less perturbation than just using the original model
the minimizing order lateness (backorders).

Since the Hamming distance is an upper bound
on the edit and Damerau-Levenshtein distance, the
Hamming distance minimization always leads to a
greater or equal edit and Damerau-Levenshtein dis-
tance. However, in both edit distance and Damerau-
Levenshtein distance minimization, there are multi-
ple cases where the distances are improved over the
Hamming distance minimization.

We can see from Table 1 that reoptimizing a produc-
tion plan in order to minimize the Hamming distance
can be done in a very short time (in comparison to
the time needed to first minimize lateness for the new
order). For a production plan of length n, only n new
variables are added to the model so this approach has
a small overhead.

The edit distance model takes more time to solve than
the Hamming distance. This is due to the greater
number of variables added. For a production plan of
length n, 4n? new variables are added to the model.

The time needed to obtain an optimal solution for the
Damerau-Levenshtein model is slightly lower on aver-
age than the time needed by the edit distance models
as shown in Table 1 even if more decision variables
are added. More precisely, 4n? + (n — 2)? new vari-
ables are added for a production plan of length n.
This lower runtime is due to the possibility of obtain-
ing a lower bound earlier in the search due to the
additional edges which represent the transposition of
adjacent elements.

However, runtime for the three distance-minimizing
models are quite smaller in comparison to the original
order-lateness minimization model. This shows that
our approach has a small cost when compared to only
minimizing the order-lateness (backorders).

6 CONCLUSION

We proposed a new technique for replanning and
scheduling while minimizing perturbation. With this

approach, the production plans are represented as se-
quences and the objective function is to minimize the
distance between the previous plan and the new plan.
Three linear models are presented for three different
distance metrics: the Hamming distance, the edit dis-
tance, and the Damerau-Levenshtein distance. We
successfully applied this technique on the planning
and scheduling of wood finishing operations. Empiri-
cal results show that the solution does replan the op-
erations with a minimum of perturbation while keep-
ing the computation time short. The choice of the
best distance metric to use is highly dependant on
the industry specifications and should be studied in
future work.
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